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Abstract – This paper investigates adjusting computer clock 
frequency and time to provide a precise clock for test and 
measurement systems. In particular, it is concerned with the 
precision achievable using IEEE 1588 Precision Time Protocol 
systems without the support of specialized hardware. This paper 
outlines the design of a free IEEE 1588 implementation named 
PTPd. Particular attention is paid to the design of the clock 
servo—the system that steers the clock rate. This paper evaluates 
the implementation by the precision of the time coordination 
between networked test and measurement systems. 
 
I. INTRODUCTION 
 
 The IEEE 1588 Precision Time Protocol (PTP) [1] 
provides a means by which networked computer systems can 
agree on a master clock reference time, and a means by which 
slave clocks can estimate their offset from master clock time. 
PTP implementations typically have a clock servo that uses a 
series of time offset estimates to coordinate the local slave 
clock with the reference master clock time, a process referred 
to as clock discipline. 
 This paper presents our software-only implementation of 
PTP. Precise time coordination with PTP relies on precise 
estimates of the send and receive times (time stamps) of 
messages exchanged between the master and slaves. High 
precision time stamps can be achieved with the support of 
specialized hardware interfaces in the physical layer of the 
network; however, many legacy systems lack such hardware 
interfaces. A PTP implementation that is not supported by 
specialized hardware is referred to as a software-only 
implementation. These implementations must time stamp in 
higher layers of the network, which introduces large degrees 
of non-determinism in the time stamp latencies, known as 
jitter. Achieving precise master-slave time coordination with 
jittery time stamps is the primary obstacle in the design of 
software-only PTP implementations. 
 This paper is organized as follows. Section II is a brief 
introduction to IEEE 1588 (PTP). Section III introduces PTPd, 
our open-source, software-only PTP implementation. Section 
IV provides an overview of clock servo design and the 
specifics of PTPd’s clock servo. Section V presents test results 
of PTPd’s performance in a target application. PTPd achieved 
precision on the order of microseconds. Section VI presents 
conclusions, comments on future work, and a link to PTPd’s 
source code. 
 
II. PTP IN BRIEF 
 
A. Masters and Slaves 

In PTP, master clocks provide the reference time for one 
or more slave clocks through the exchange of messages over a 
network. The protocol determines a unique master among a 
group of clocks using the Best Master Clock algorithm 
(BMC). The BMC selects the most stable and accurate clock. 

 
B. Sync Messages 
 PTP masters send Sync messages. The master records the 
send time of Sync messages (t1), and slaves record the receipt 
time (t2). The difference between the send and receipt times of 
Sync messages is the master-to-slave delay (dm2s): 

 
     dm2s = t1 – t2.     (2.1) 
 
Sync messages are sent once per Sync interval (Tsync) 
(typically 2 s). This makes the master-to-slave delay sampling 
period (Tm2s): 
 
     Tm2s = Tsync = 2 s.    (2.2) 
 
C. Delay Request Messages 
 PTP slaves send Delay Request messages. Slaves record 
the send time of Delay Request messages (t3), and the master 
records the receipt time (t4). The difference between the send 
and receipt times of Delay Request messages is the slave-to-
master delay (ds2m): 
 
     ds2m = t3 – t4.     (2.3) 
 
Delay Request messages are sent on intervals uniformly 
distributed between 2 and 30 Sync intervals. This makes the 
slave-to-master delay sampling period (Ts2m): 
 
     Ts2m = Tsync * U[2,30].   (2.4) 
 
D. One-Way Delay 
 PTP calculates an estimate of the message propagation 
delay. This calculation assumes symmetric propagation 
delays, so that an average of the master-to-slave and slave-to-
master delays cancels the time offset between master and 
slave. This yields the message propagation delay, which the 
specification refers to as the one-way delay (dprop): 
 
     dprop = (dm2s + ds2m)/2.   (2.5) 
 
 Assuming symmetric propagation delays is often, but not 
always, valid. Asymmetric propagation delays cannot be 
observed by the protocol. They will cause a constant bias in 
the one-way delay and, in turn, the overall time coordination. 
The bias will equal half of the magnitude of the delay 
asymmetry. 
 Assuming a constant delay asymmetry, an asymmetric 
delay bias can be eliminated by adding a latency correction to 
the master-to-slave or slave-to-master delay that cancels the 
asymmetry; however, assuming constant delay asymmetry 
also may be invalid. 
 
E. Offset From Master 
 PTP estimates the time difference between master and 
slave clocks. This is the master-to-slave delay corrected for 
message propagation delay, and it is referred to as the offset 
from master (∆t): 
 

∆t = dm2s – dprop.    (2.6) 
 
III. PTPd IN BRIEF 
 
A. Background 
 The Precision Time Protocol daemon (PTPd) is a 
software-only PTP implementation. It was developed by two 
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engineering students at Case Western Reserve University over 
a period of approximately six months as part of an 
undergraduate senior project. 
 
B. Test and Measurement 
 PTPd is currently developed for Test and Measurement 
(T&M) systems. For T&M devices (e.g., volt meters and 
thermocouple instruments), PTP provides time and frequency 
coordination for the time-stamping of acquired data, and PTP 
provides a common time-base for time-triggered data 
acquisition. 
 The needs of T&M systems significantly influence the 
current design of PTPd’s clock servo. Most notably, the servo 
is optimized for the stable network topology typical of test and 
measurement set-ups. 
 
C. Hardware Constraints 
 PTPd is a software-only system. It lacks two notable 
systems found in hardware-supported implementations. First, 
PTPd uses software time stamps. It records message send and 
receive times in the software layers of the network stack rather 
than in the physical layer of the networking hardware (e.g., 
snooping the MII bus of an Ethernet PHY [2]). Second, PTPd 
uses a software clock. It adjusts the magnitude of the periodic 
increment of a time quantity stored in memory. However, 
PTPd was outfitted with a hardware clock for the tests 
included in this paper. This was done to allow the clock to be 
read with minimal jitter by isolating jitter in clock reads from 
jitter in clock coordination. 
 PTPd is intended for embedded computer platforms that 
have minimal computing resources. This includes platforms 
with sub-100MHz CPUs. The program’s CPU utilization is 
below 1% on a 66 MHz m68k processor, as observed by 
standard resource utilization monitors like the UNIX top 
utility. Also, PTPd does not require a Floating Point Unit 
(FPU), or FPU emulation, because it uses only fixed point 
arithmetic. Efficiency and limitation to fixed-point arithmetic 
are significant considerations in the design of the clock servo. 
 
D. Software Constraints 
 PTPd is currently ported to Linux. Most of the PTPd 
system, including the protocol stack and the clock servo, runs 
as a background user-space process. This allows PTPd to 
“play nicely” in typical multi-task computing environments. 
PTPd relies on simple kernel-space routines for its timely 
components: the frequency adjustable clock and the message 
time stamps. 

PTPd interfaces with the kernel through standard Linux 
system calls. Receive time stamps are recorded in the Network 
Interface Card (NIC) driver, in or close to the receive interrupt 
handler. The receive time stamps are passed to user-space 
though an ioctl(). The receive time stamp mechanism is 
included in vanilla (unmodified) Linux version 2.4 and 2.6 
kernels. A similar send time stamp mechanism is not included 
in vanilla Linux kernels, but kernel send time stamps can be 
added to Linux with only small modifications. The entire 
modification typically amounts to less than ten lines of code. 
PTPd can operate acceptably without kernel send time stamps, 
but it performs better with the lower jitter afforded by kernel 
send time stamps, especially under heavy CPU loads. 
 PTPd uses the Linux kernel’s software clock along with 
the adjtimex() interface for clock tick-rate adjustment. 
Linux’s clock is an implementation of the hybrid kernel 
Phase-Locked Loop/Frequency-Locked Loop (PLL/FLL) 
designed by David Mills for the Network Time Protocol 
(NTP) project [3]. The interface provides many types of clock 
adjustments, including a self-tuning PLL servo; however, 

PTPd uses its own servo loop and relies on only 
adjtimex() frequency adjustment. This combination is 
effective because the user-space servo is efficient and is not 
sensitive to execution latency, and adjtimex() is accurate 
and responsive to rate adjustments. 
 Vanilla Linux is not a real time operating system (RTOS); 
therefore, it guarantees no bounds on interrupt servicing 
latencies. Both message receipts and clock ticks are interrupt 
driven events. Variations in interrupt latencies create jitter in 
the delay estimates that PTPd uses to coordinate clocks. Jitter 
presents the greatest challenge to precise time coordination, 
and it is the most significant consideration in the design of the 
clock servo. 
 
IV. CLOCK SERVO 
 
A. Overview 
 Figure 1 is a diagram of PTPd’s clock servo. The diagram 
from left to right shows the data path from the protocol to the 
clock. The protocol regularly samples the master-to-slave 
delay (cf. Equation (2.2)), and it intermittently samples the 
slave-to-master delay (cf. Equation (2.4)). Correspondingly, 
the offset from master is updated regularly, and the one-way 
delay is updated intermittently. The figure shows the delay 
and Sync interval inputs, the offset and one-way delay 
calculations, the offset and one-way delay filters, and the PI 
controller that mediates the servo output. The output is a 
fractional tick-rate adjustment that disciplines the clock. 
 

 
 

Fig. 1. Clock Servo Diagram 
 
B. Design Parameters 
 Three characteristics were considered during the design 
PTPd’s clock servo. First is the closed-loop response, 
including convergence and stability. The acceptable period of 
initial convergence is on the order of minutes, and the quantity 
tracked by the servo changes slowly. This allows convergence 
to be attained and maintained with conservative controller 
tuning, and conservative tuning largely eliminates stability 
concerns. 
 The second characteristic is time error. This represents the 
time-dependent applications that require two clocks to read the 
same time at any given point in time. An example of this 
requirement would be two systems that must take a 
measurement at precisely the same time. Another example 
would be two systems that must precisely measure the 
coincidence in time of two events. A useful metric of time 
coordination is the root-mean-square (RMS) time difference 
between clocks. 
 The third characteristic is rate error. This represents the 
time-dependent applications that require two clocks to 
progress at the same rate over a given period of time. An 
example of this requirement would be a system that measures 
the frequency content of a signal. It might seem that low rate 
error must follow implicitly from low time error, but this is 
not so. A servo design that minimizes time error may sacrifice 
rate error, and vice versa. This could occur with an 
aggressively tuned servo that tracks closely but with a lot of 
ringing, and the converse case could occur in a sluggishly 
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tuned controller that tracks with a significant offset but is 
noiseless and steady over short intervals. 
 A useful metric of rate error over a given period is the 
modified Allan variance [4, 5] versus summation time (herein 
referred to as variance versus time scale). The relative tick-
rate between clocks typically exhibits three modes of variance: 
a minimum variance at some medium time scale (typically 
nanoseconds to many seconds) with increasing variance for 
small and large time scales. The increasing variance for small 
time scales represents jitter in the physical oscillator driving 
the clock. The increasing variance for large time scales 
represents wander between oscillators caused by changes in 
the tick-rate due to supply voltage or ambient temperature 
changes. Clock discipline typically aims to correct oscillator 
wander and cannot correct oscillator jitter. Ideally, clock 
discipline should not corrupt the naturally low oscillator 
variance on medium time scales. 
 
C. Clock Servo Input 
 The following plots provide a rough picture of the input to 
PTPd’s clock servo. Figure 2 plots PTPd’s offset estimate 
versus master clock time over a roughly one-hour run, and 
Figure 3 plots the relative tick-rate estimate (the first 
derivative of the offset in master clock time) versus master 
clock time. The offset was sampled without PTPd performing 
any clock discipline. PTPd was a slave to a hardware-
supported PTP implementation that achieves sub-microsecond 
precision. PTPd was running on a 66 MHz m68k embedded 
Linux platform, with kernel send and receive time stamps. 
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Fig. 2 (top) and Fig. 3 (bottom). Clock Servo Input 

 
The offset signal in Figure 2 is typical of two 

undisciplined clocks. They drift away from each other in a 
nominally linear fashion due to inherent tick-rate differences, 
with some slight curvature due to variations in ambient 
conditions, including temperature [6]. 

Figure 3 reveals the microsecond-order noise in the offset 
signal that is obscured by the large magnitude of the signal in 
Figure 2. Figure 3 shows two modes of noise. One mode is 
persistent, high frequency, lower energy noise. Another mode 
is intermittent, higher energy impulse noise. The noise is not 

an artifact introduced by the protocol or PTPd because the 
same modes of noise are exhibited in offsets sampled with an 
interrupt time stamped master-to-slave pulse-per-second 
(PPS), one of the simplest means of sampling clock offsets. 
The persistent noise is likely due to the nominal level of 
interrupt servicing latency jitter. The impulses may be due to 
interrupt latencies from extremely long periods of time when 
interrupts are disabled, or they could be due to periods of 
delayed execution due to bursty CPU or interrupt loads. Both 
of these sources of jitter are common in a non-RTOS. 

Overall, the noise might appear small because it is orders 
of magnitude smaller than the long term time loss; however, 
the 10-30 µs/s noise is orders of magnitude larger than the 
roughly 0.5 µs/s tick-rate difference that the clock servo must 
extract from the offset signal to discipline the local clock. 
 
D. PI Controller 
 The clock servo inputs the offset from master signal into a 
Proportional-Integral (PI) controller to produce a fractional 
tick-rate adjustment that coordinates the local clock with 
master clock time. The PI controller corrects both the time and 
rate of the local clock. The proportional term tracks and 
corrects the direct input, which is the time difference between 
two clocks. The integral term tracks and corrects steady-state 
error, which is the rate difference between two clocks. 
 The PI controller approach works well in terms of time 
error. The controller will drive the time error to zero in stable 
operation, and there are many analytical tools to optimize PI 
controller tracking. 
 The PI controller approach also works fairly well in terms 
of rate error. The controller tracks just as closely over short 
intervals as it does over long intervals. This characteristic is 
effective for correcting oscillator wander, which pushes the 
Allan variance to zero for long time scales. However, a 
problem with the PI controller approach arises on medium 
time scales. The PI controller attenuates noise in its input, but 
some noise will pass through to its output. This will increase 
the Allan variance for medium time scales. This problem is 
often the motivation for windowed and non-linear clock 
servos [7]. 
 
E. Filters 
 The clock servo uses filtering to mitigate the detrimental 
effect of input jitter on clock coordination. The filtering 
attenuates noise in the clock servo input to keep it out of the 
controller, which keeps jitter out of the clock. 
 What must be filtered out of the input signal is the 
persistent noise and the impulse noise described previously. 
The clock servo uses low-pass filters to attenuate input noise. 
Low-pass filters are reasonably effective in discriminating 
between noise and good input. This is because much of the 
energy in the input signal is close to zero frequency (within 
the pass-band of a low-pass filter), whereas much of the 
energy of the input noise is at higher frequencies (within the 
stop-band of a low-pass filter). 
 Low-pass filtering is a useful but problematic component 
of the clock servo. Typically, noise does have low frequency 
energy that can pass through low-pass filters (e.g. impulses, 
which have an even energy distribution throughout the 
frequency spectrum). Lowering the cutoff of the filter 
attenuates more noise, but lower cutoffs incur greater filtering 
delays. Delays make the controller less responsive to wander, 
which increases the tracking error. 

Another problem is that low-pass filters can be biased by 
colored noise. This could be caused by asymmetric jitter, and 
would result in a constant offset in the clock coordination. 
Such biases are typically not a problem because, as previously 
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described, constant offsets can be zeroed by adding a latency 
correction to the master-to-slave or slave-to-master delay. 
 The clock servo filters both the offset from master and the 
one-way delay. The offset from master filtering is only a 
simple, two-sample average: 
 

y[n] = x[n]/2 + x[n-1]/2.   (4.1) 
 
This is a Finite Impulse Response (FIR) low-pass filter with a 
rather high cutoff near the Nyquist rate, but it has minimal 
delay. This filter effectively attenuates high frequency noise, 
which the controller does not attenuate as effectively. The 
one-sample delay incurred through the filter introduces 
negligible tracking error. 
 The one-way delay filtering is more involved than the 
offset filtering. The one-way delay filter is a variable 
cutoff/phase, first-order Infinite Impulse Response (IIR) filter: 
 
  s*y[n] - (s-1)*y[n-1] = x[n]/2 + x[n-1]/2. (4.2) 
 
Figure 4 shows the one-way delay filter’s frequency response, 
plotted from zero to the Nyquist rate. 
 

 
 

Fig. 4. Frequency Response of Equation (4.2). 
 

For those that are more comfortable with statistical 
analysis than signal processing, the one-way delay filter can 
be viewed as a modified exponential smoothing calculation. 
The standard exponential smoothing form is modified for 
fixed point arithmetic, and a two-sample average is added to 
improve the response characteristics at high frequencies. 

The ’s’ term in Equation (4.2) controls the cutoff and 
phase of the filter, and the term is herein referred to as the 
stiffness. With a stiffness of one, recursion is eliminated, 
leaving only a two-sample average (a low-pass FIR filter). 
Increasing the stiffness lowers the cutoff, but increases the 
delay. 

The clock servo uses this variable cutoff/phase to allow 
the filter to overcome initial filtering delays at start-up. The 
servo begins with a stiffness of one, and then increments the 
stiffness each sample until reaching some maximum stiffness. 
As the stiffness is increased, the filter cutoff is lowered, and 
the one-way delay signal becomes smoother. 
 PTPd’s clock servo filters the one-way delay separately 
from the offset from master. This is for two reasons. The first 
reason is that the one-way delay signal has a lower nominal 
sample rate than the offset signal (cf. Equation (2.1-2.6)). The 

one-way delay signal is therefore interpolated in the combined 
offset from master signal. This interpolation lowers the 
frequency of the one-way delay noise, which pushes more 
noise into the pass-band of the low-pass filters. Filtering the 
one-way delay directly eliminates the interpolation seen by the 
filter. 
 The second reason why the one-way delay is filtered 
separately is due to the one-way delay signal’s having 
different characteristics than the offset signal. The one-way 
delay signal reflects the message propagation delay, and its 
characteristics depend upon the network topology. In the case 
of the typical T&M set-up, the one way delay is nominally 
close to constant. A constant one-way delay signal can be 
filtered through a low-cutoff, high-phase, low-pass filter 
without increasing the tracking error of the clock servo. This is 
because there is no time delay of a constant signal through a 
real filter. 
 Some applications may not offer a stable network 
topology; therefore, the one-way delay signal would not be 
nominally a constant. The current filtering scheme in PTPd’s 
clock servo may not be appropriate for such applications. 
However, the general approach of treating the one-way delay 
separately from the offset from master would remain a useful 
approach. 
 
V. TESTS 
 
A. Test Set-up 
 PTPd is currently being developed for the VXI 
Technology EX1048 precision thermocouple instrument [8]. 
The EX1048 is a 66MHz m68k embedded Linux platform. 
The following tests exhibit PTPd running as a slave connected 
over an Ethernet hub (except where noted) to a hardware-
supported master clock. The EX1048 was coordinated with a 
hardware-supported master clock because it is expected that a 
T&M set-up coordinated with IEEE 1588 will include a 
hardware supported master clock. The master clock for the test 
is an Agilent LXI IEEE-1588 Demonstration Kit. It is a non-
production device made available to the LAN Extensions for 
Instrumentation (LXI) Consortium for IEEE 1588 testing. 
Information on the LXI Consortium is available at [9].  
 The Linux kernel receive time stamps are used, and the 
kernel is modified to add kernel send time stamps. The Linux 
software clock is replaced by a frequency adjustable hardware 
clock implemented in an FPGA. The hardware clock is able to 
latch the time of received pulses with sub-microsecond 
precision, but the time is recorded with only microsecond 
quantization. This is sufficient to test PTPd’s coordination, 
which is on the order of microseconds. Again, the hardware 
clock is used to allow the clock to be read with negligible jitter 
by isolating jitter in the clock from jitter in the observation. 
 The clock coordination is observed by the slave clock 
recording the time of pulses-per-second (PPS) generated by 
the master clock. This yields a 1Hz sampling of the slave 
clock’s time with respect to the master clock. 
 
B. Filtering 

Figure 5 shows time offset between master and slave with 
various levels of filtering in the clock servo. The top run 
shows the results of sending unfiltered input to the PI 
controller. The jitter in the input makes it through to the clock 
and results in a poor time base. The low frequency undulations 
are likely due to the large impulses in the input, and the higher 
frequency noise on top of the undulations is likely due to the 
persistent noise in the input. 

The middle run uses the fully configured clock servo with 
filters, but with a one-way delay filter stiffness of one 
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(equivalent to a two-sample average). The offset from master 
is also filtered by a two-sample simple average. The high 
frequency noise appears slightly smoother, and the 
undulations seem slightly smoother as well. 
 The bottom run has a one-way delay filter stiffness of 26, 
and the coordination is significantly smoother. Most notably, 
the large undulations have been cut down to small intermittent 
excursions. These excursions are likely due to impulse noise 
in the input that is not fully attenuated in the clock servo. 
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Fig. 5. Filtering Test 

 
C. Convergence 
 Figure 6 shows the time offset between master and slave 
during the first ten minutes after PTPd starts-up and performs 
an initial clock reset. Figure 7 shows the next roughly hour-
and-a-half after the initial convergence period. 
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Fig. 6. Convergence Test, 0-10min 
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 Fig. 7. Convergence Test, 10-90min 

 
 Figures 6-7 show that coordination is within ~100 µs after 
roughly two minutes, and it is within 10 µs after roughly ten 
minutes. The response characteristics of the PI controller 
dominate the initial convergence because the one-way delay 
filter has low stiffness values during this period. The servo 
does not fully converge for about an hour. During this fine 
convergence period, the one-way delay filter stiffness is 

increasing and the filtering delay of the one-way delay signal 
dominates the convergence. 
 
D. Precision 
 Figures 8-9 shows two histograms of the time offset 
between master and slave after the clock servo is well 
converged. The histograms contain 1 µs bins with 50,000 
offset samples at 1 Hz (almost fourteen hours). Figure 8 is 
from a test in which the slave was connected to the master 
through an Ethernet hub, and Figure 9 is from a test in which 
the slave was connected to the master through an Ethernet 
switch. 
 

 
 

Fig. 8 (top) and Fig. 9 (bottom). Offset Histograms 
 

The histograms show that the offset distributions for both 
runs are within 10 µs. The offset distribution of the switch run 
is nearly as tight as the hub run. This indicates that jitter due to 
switch queuing is insignificant with respect to the slave’s 
internal jitter. There is a bias in both of the distributions, but 
this is not a concern because the tight distribution indicates 
that the bias is stable; therefore, it can be eliminated with a 
latency correction as described previously. 
 

 
 

Fig. 10. Allan Variances 
 

Figure 10 shows Allan variance plots of the same 50,000 
sample runs versus the variance of an uncoordinated run. The 
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variances for the coordinated hub and switch runs are nearly 
on top of each other in the plot. The uncoordinated variance 
has the V-shape typical of uncoordinated clocks due to 
oscillator jitter on small time scales, a naturally low oscillator 
variance on medium time-scales, and oscillator wander on 
large time scales. 

Figure 10 shows the advantage of using a PI controller. 
The variance of the coordinated clock goes to zero for large 
time scales. This indicates that the clock servo is properly 
correcting the wander between the oscillators, and it is a result 
of stable controller tracking. 
 Figure 10 also shows the troubles with PI controllers. The 
coordinated clock’s variance on medium time scales (1-100 
seconds shown) is larger than the uncoordinated variance. This 
is likely due to jitter in the offset estimate passing through the 
filters, into the PI controller, and in-turn into the clock. The 
jitter disrupts an oscillator that is naturally smooth on these 
time scales. 
 
VI. CONCLUSIONS 
 
A. Performance 
 PTPd coordinated the EX1048 with a hardware-supported 
master clock within 10 µs. This precision comfortably exceeds 
the needs of the application in which sampling rates will not 
surpass 1 kHz. 
 PTPd can fill the needs of applications requiring sub-
millisecond precision. PTPd exhibited coordination within ten 
microseconds on a platform with a slow (66 MHz), fairly busy 
CPU. It is reasonable to conjecture that PTPd could approach 
single-microsecond precision on a modern desktop platform 
with a more powerful (typically multi-gigahertz) CPU running 
under light CPU loads. 
 
B. Future Work 
 PTPd is currently in the early stages of development. The 
clock servo is still quite simple and naive. PTPd’s clock 
coordination precision could be increased with improvements 
to the clock servo design. Most notably, the noisy coordination 
on medium time-scales could be smoother. This could be 
addressed with the addition of a non-linear filtering element 
that could more effectively attenuate impulses in the clock 
servo input. 
 There are other improvements that also may be effective. 
The PI controller could benefit from improved tuning with the 
aid of formal analytical methods. The controller might also 
benefit from the use of gain scheduling. Finally, the one-way 
delay filter could be improved to accommodate unstable 
network topologies. The addition of some form of dynamic 
stiffness adjustment would keep the clock servo responsive to 
changes in the nominal one-way delay. 
 
C. Open Source 

PTPd is open source software. The source code is 
available under same BSD-style license as NTP. The project is 
hosted on SourceForge at ptpd.sourceforge.net. 
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