
1

Design Considerations for Software Only Implementations
of the IEEE 1588 Precision Time Protocol

Kendall Correll, Nick Barendt

VXI Technology, Inc.
Cleveland, Ohio, USA

Michael Branicky
EECS Dept., Case Western Reserve University

Cleveland, Ohio, USA

Abstract – This paper investigates adjusting computer clock
frequency and time to provide a precise clock for test and
measurement systems. In particular, it is concerned with the
precision achievable using IEEE 1588 Precision Time Protocol
systems without the support of specialized hardware. This paper
outlines the design of a free IEEE 1588 implementation named
PTPd. Particular attention is paid to the design of the clock
servo—the system that steers the clock rate. This paper evaluates
the implementation by the precision of the time coordination
between networked test and measurement systems.

I. INTRODUCTION

 The IEEE 1588 Precision Time Protocol (PTP) [1]
provides a means by which networked computer systems can
agree on a master clock reference time, and a means by which
slave clocks can estimate their offset from master clock time.
PTP implementations typically have a clock servo that uses a
series of time offset estimates to coordinate the local slave
clock with the reference master clock time, a process referred
to as clock discipline.
 This paper presents our software-only implementation of
PTP. Precise time coordination with PTP relies on precise
estimates of the send and receive times (time stamps) of
messages exchanged between the master and slaves. High
precision time stamps can be achieved with the support of
specialized hardware interfaces in the physical layer of the
network; however, many legacy systems lack such hardware
interfaces. A PTP implementation that is not supported by
specialized hardware is referred to as a software-only
implementation. These implementations must time stamp in
higher layers of the network, which introduces large degrees
of non-determinism in the time stamp latencies, known as
jitter. Achieving precise master-slave time coordination with
jittery time stamps is the primary obstacle in the design of
software-only PTP implementations.
 This paper is organized as follows. Section II is a brief
introduction to IEEE 1588 (PTP). Section III introduces PTPd,
our open-source, software-only PTP implementation. Section
IV provides an overview of clock servo design and the
specifics of PTPd’s clock servo. Section V presents test results
of PTPd’s performance in a target application. PTPd achieved
precision on the order of microseconds. Section VI presents
conclusions, comments on future work, and a link to PTPd’s
source code.

II. PTP IN BRIEF

A. Masters and Slaves

In PTP, master clocks provide the reference time for one
or more slave clocks through the exchange of messages over a
network. The protocol determines a unique master among a
group of clocks using the Best Master Clock algorithm
(BMC). The BMC selects the most stable and accurate clock.

B. Sync Messages
 PTP masters send Sync messages. The master records the
send time of Sync messages (t1), and slaves record the receipt
time (t2). The difference between the send and receipt times of
Sync messages is the master-to-slave delay (dm2s):

 dm2s = t1 – t2. (2.1)

Sync messages are sent once per Sync interval (Tsync)
(typically 2 s). This makes the master-to-slave delay sampling
period (Tm2s):

 Tm2s = Tsync = 2 s. (2.2)

C. Delay Request Messages
 PTP slaves send Delay Request messages. Slaves record
the send time of Delay Request messages (t3), and the master
records the receipt time (t4). The difference between the send
and receipt times of Delay Request messages is the slave-to-
master delay (ds2m):

 ds2m = t3 – t4. (2.3)

Delay Request messages are sent on intervals uniformly
distributed between 2 and 30 Sync intervals. This makes the
slave-to-master delay sampling period (Ts2m):

 Ts2m = Tsync * U[2,30]. (2.4)

D. One-Way Delay
 PTP calculates an estimate of the message propagation
delay. This calculation assumes symmetric propagation
delays, so that an average of the master-to-slave and slave-to-
master delays cancels the time offset between master and
slave. This yields the message propagation delay, which the
specification refers to as the one-way delay (dprop):

 dprop = (dm2s + ds2m)/2. (2.5)

 Assuming symmetric propagation delays is often, but not
always, valid. Asymmetric propagation delays cannot be
observed by the protocol. They will cause a constant bias in
the one-way delay and, in turn, the overall time coordination.
The bias will equal half of the magnitude of the delay
asymmetry.
 Assuming a constant delay asymmetry, an asymmetric
delay bias can be eliminated by adding a latency correction to
the master-to-slave or slave-to-master delay that cancels the
asymmetry; however, assuming constant delay asymmetry
also may be invalid.

E. Offset From Master
 PTP estimates the time difference between master and
slave clocks. This is the master-to-slave delay corrected for
message propagation delay, and it is referred to as the offset
from master (∆t):

∆t = dm2s – dprop. (2.6)

III. PTPd IN BRIEF

A. Background
 The Precision Time Protocol daemon (PTPd) is a
software-only PTP implementation. It was developed by two

2

engineering students at Case Western Reserve University over
a period of approximately six months as part of an
undergraduate senior project.

B. Test and Measurement
 PTPd is currently developed for Test and Measurement
(T&M) systems. For T&M devices (e.g., volt meters and
thermocouple instruments), PTP provides time and frequency
coordination for the time-stamping of acquired data, and PTP
provides a common time-base for time-triggered data
acquisition.
 The needs of T&M systems significantly influence the
current design of PTPd’s clock servo. Most notably, the servo
is optimized for the stable network topology typical of test and
measurement set-ups.

C. Hardware Constraints
 PTPd is a software-only system. It lacks two notable
systems found in hardware-supported implementations. First,
PTPd uses software time stamps. It records message send and
receive times in the software layers of the network stack rather
than in the physical layer of the networking hardware (e.g.,
snooping the MII bus of an Ethernet PHY [2]). Second, PTPd
uses a software clock. It adjusts the magnitude of the periodic
increment of a time quantity stored in memory. However,
PTPd was outfitted with a hardware clock for the tests
included in this paper. This was done to allow the clock to be
read with minimal jitter by isolating jitter in clock reads from
jitter in clock coordination.
 PTPd is intended for embedded computer platforms that
have minimal computing resources. This includes platforms
with sub-100MHz CPUs. The program’s CPU utilization is
below 1% on a 66 MHz m68k processor, as observed by
standard resource utilization monitors like the UNIX top
utility. Also, PTPd does not require a Floating Point Unit
(FPU), or FPU emulation, because it uses only fixed point
arithmetic. Efficiency and limitation to fixed-point arithmetic
are significant considerations in the design of the clock servo.

D. Software Constraints
 PTPd is currently ported to Linux. Most of the PTPd
system, including the protocol stack and the clock servo, runs
as a background user-space process. This allows PTPd to
“play nicely” in typical multi-task computing environments.
PTPd relies on simple kernel-space routines for its timely
components: the frequency adjustable clock and the message
time stamps.

PTPd interfaces with the kernel through standard Linux
system calls. Receive time stamps are recorded in the Network
Interface Card (NIC) driver, in or close to the receive interrupt
handler. The receive time stamps are passed to user-space
though an ioctl(). The receive time stamp mechanism is
included in vanilla (unmodified) Linux version 2.4 and 2.6
kernels. A similar send time stamp mechanism is not included
in vanilla Linux kernels, but kernel send time stamps can be
added to Linux with only small modifications. The entire
modification typically amounts to less than ten lines of code.
PTPd can operate acceptably without kernel send time stamps,
but it performs better with the lower jitter afforded by kernel
send time stamps, especially under heavy CPU loads.
 PTPd uses the Linux kernel’s software clock along with
the adjtimex() interface for clock tick-rate adjustment.
Linux’s clock is an implementation of the hybrid kernel
Phase-Locked Loop/Frequency-Locked Loop (PLL/FLL)
designed by David Mills for the Network Time Protocol
(NTP) project [3]. The interface provides many types of clock
adjustments, including a self-tuning PLL servo; however,

PTPd uses its own servo loop and relies on only
adjtimex() frequency adjustment. This combination is
effective because the user-space servo is efficient and is not
sensitive to execution latency, and adjtimex() is accurate
and responsive to rate adjustments.
 Vanilla Linux is not a real time operating system (RTOS);
therefore, it guarantees no bounds on interrupt servicing
latencies. Both message receipts and clock ticks are interrupt
driven events. Variations in interrupt latencies create jitter in
the delay estimates that PTPd uses to coordinate clocks. Jitter
presents the greatest challenge to precise time coordination,
and it is the most significant consideration in the design of the
clock servo.

IV. CLOCK SERVO

A. Overview
 Figure 1 is a diagram of PTPd’s clock servo. The diagram
from left to right shows the data path from the protocol to the
clock. The protocol regularly samples the master-to-slave
delay (cf. Equation (2.2)), and it intermittently samples the
slave-to-master delay (cf. Equation (2.4)). Correspondingly,
the offset from master is updated regularly, and the one-way
delay is updated intermittently. The figure shows the delay
and Sync interval inputs, the offset and one-way delay
calculations, the offset and one-way delay filters, and the PI
controller that mediates the servo output. The output is a
fractional tick-rate adjustment that disciplines the clock.

Fig. 1. Clock Servo Diagram

B. Design Parameters
 Three characteristics were considered during the design
PTPd’s clock servo. First is the closed-loop response,
including convergence and stability. The acceptable period of
initial convergence is on the order of minutes, and the quantity
tracked by the servo changes slowly. This allows convergence
to be attained and maintained with conservative controller
tuning, and conservative tuning largely eliminates stability
concerns.
 The second characteristic is time error. This represents the
time-dependent applications that require two clocks to read the
same time at any given point in time. An example of this
requirement would be two systems that must take a
measurement at precisely the same time. Another example
would be two systems that must precisely measure the
coincidence in time of two events. A useful metric of time
coordination is the root-mean-square (RMS) time difference
between clocks.
 The third characteristic is rate error. This represents the
time-dependent applications that require two clocks to
progress at the same rate over a given period of time. An
example of this requirement would be a system that measures
the frequency content of a signal. It might seem that low rate
error must follow implicitly from low time error, but this is
not so. A servo design that minimizes time error may sacrifice
rate error, and vice versa. This could occur with an
aggressively tuned servo that tracks closely but with a lot of
ringing, and the converse case could occur in a sluggishly

3

tuned controller that tracks with a significant offset but is
noiseless and steady over short intervals.
 A useful metric of rate error over a given period is the
modified Allan variance [4, 5] versus summation time (herein
referred to as variance versus time scale). The relative tick-
rate between clocks typically exhibits three modes of variance:
a minimum variance at some medium time scale (typically
nanoseconds to many seconds) with increasing variance for
small and large time scales. The increasing variance for small
time scales represents jitter in the physical oscillator driving
the clock. The increasing variance for large time scales
represents wander between oscillators caused by changes in
the tick-rate due to supply voltage or ambient temperature
changes. Clock discipline typically aims to correct oscillator
wander and cannot correct oscillator jitter. Ideally, clock
discipline should not corrupt the naturally low oscillator
variance on medium time scales.

C. Clock Servo Input
 The following plots provide a rough picture of the input to
PTPd’s clock servo. Figure 2 plots PTPd’s offset estimate
versus master clock time over a roughly one-hour run, and
Figure 3 plots the relative tick-rate estimate (the first
derivative of the offset in master clock time) versus master
clock time. The offset was sampled without PTPd performing
any clock discipline. PTPd was a slave to a hardware-
supported PTP implementation that achieves sub-microsecond
precision. PTPd was running on a 66 MHz m68k embedded
Linux platform, with kernel send and receive time stamps.

0

0.5

1

1.5

2

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

O
ffs

et
, m

s

-50

-30

-10

10

30

50

Time, s

R
el

at
iv

e
Ti

ck
 R

at
e,

 u
s/

s

Fig. 2 (top) and Fig. 3 (bottom). Clock Servo Input

The offset signal in Figure 2 is typical of two

undisciplined clocks. They drift away from each other in a
nominally linear fashion due to inherent tick-rate differences,
with some slight curvature due to variations in ambient
conditions, including temperature [6].

Figure 3 reveals the microsecond-order noise in the offset
signal that is obscured by the large magnitude of the signal in
Figure 2. Figure 3 shows two modes of noise. One mode is
persistent, high frequency, lower energy noise. Another mode
is intermittent, higher energy impulse noise. The noise is not

an artifact introduced by the protocol or PTPd because the
same modes of noise are exhibited in offsets sampled with an
interrupt time stamped master-to-slave pulse-per-second
(PPS), one of the simplest means of sampling clock offsets.
The persistent noise is likely due to the nominal level of
interrupt servicing latency jitter. The impulses may be due to
interrupt latencies from extremely long periods of time when
interrupts are disabled, or they could be due to periods of
delayed execution due to bursty CPU or interrupt loads. Both
of these sources of jitter are common in a non-RTOS.

Overall, the noise might appear small because it is orders
of magnitude smaller than the long term time loss; however,
the 10-30 µs/s noise is orders of magnitude larger than the
roughly 0.5 µs/s tick-rate difference that the clock servo must
extract from the offset signal to discipline the local clock.

D. PI Controller
 The clock servo inputs the offset from master signal into a
Proportional-Integral (PI) controller to produce a fractional
tick-rate adjustment that coordinates the local clock with
master clock time. The PI controller corrects both the time and
rate of the local clock. The proportional term tracks and
corrects the direct input, which is the time difference between
two clocks. The integral term tracks and corrects steady-state
error, which is the rate difference between two clocks.
 The PI controller approach works well in terms of time
error. The controller will drive the time error to zero in stable
operation, and there are many analytical tools to optimize PI
controller tracking.
 The PI controller approach also works fairly well in terms
of rate error. The controller tracks just as closely over short
intervals as it does over long intervals. This characteristic is
effective for correcting oscillator wander, which pushes the
Allan variance to zero for long time scales. However, a
problem with the PI controller approach arises on medium
time scales. The PI controller attenuates noise in its input, but
some noise will pass through to its output. This will increase
the Allan variance for medium time scales. This problem is
often the motivation for windowed and non-linear clock
servos [7].

E. Filters
 The clock servo uses filtering to mitigate the detrimental
effect of input jitter on clock coordination. The filtering
attenuates noise in the clock servo input to keep it out of the
controller, which keeps jitter out of the clock.
 What must be filtered out of the input signal is the
persistent noise and the impulse noise described previously.
The clock servo uses low-pass filters to attenuate input noise.
Low-pass filters are reasonably effective in discriminating
between noise and good input. This is because much of the
energy in the input signal is close to zero frequency (within
the pass-band of a low-pass filter), whereas much of the
energy of the input noise is at higher frequencies (within the
stop-band of a low-pass filter).
 Low-pass filtering is a useful but problematic component
of the clock servo. Typically, noise does have low frequency
energy that can pass through low-pass filters (e.g. impulses,
which have an even energy distribution throughout the
frequency spectrum). Lowering the cutoff of the filter
attenuates more noise, but lower cutoffs incur greater filtering
delays. Delays make the controller less responsive to wander,
which increases the tracking error.

Another problem is that low-pass filters can be biased by
colored noise. This could be caused by asymmetric jitter, and
would result in a constant offset in the clock coordination.
Such biases are typically not a problem because, as previously

4

described, constant offsets can be zeroed by adding a latency
correction to the master-to-slave or slave-to-master delay.
 The clock servo filters both the offset from master and the
one-way delay. The offset from master filtering is only a
simple, two-sample average:

y[n] = x[n]/2 + x[n-1]/2. (4.1)

This is a Finite Impulse Response (FIR) low-pass filter with a
rather high cutoff near the Nyquist rate, but it has minimal
delay. This filter effectively attenuates high frequency noise,
which the controller does not attenuate as effectively. The
one-sample delay incurred through the filter introduces
negligible tracking error.
 The one-way delay filtering is more involved than the
offset filtering. The one-way delay filter is a variable
cutoff/phase, first-order Infinite Impulse Response (IIR) filter:

 s*y[n] - (s-1)*y[n-1] = x[n]/2 + x[n-1]/2. (4.2)

Figure 4 shows the one-way delay filter’s frequency response,
plotted from zero to the Nyquist rate.

Fig. 4. Frequency Response of Equation (4.2).

For those that are more comfortable with statistical
analysis than signal processing, the one-way delay filter can
be viewed as a modified exponential smoothing calculation.
The standard exponential smoothing form is modified for
fixed point arithmetic, and a two-sample average is added to
improve the response characteristics at high frequencies.

The ’s’ term in Equation (4.2) controls the cutoff and
phase of the filter, and the term is herein referred to as the
stiffness. With a stiffness of one, recursion is eliminated,
leaving only a two-sample average (a low-pass FIR filter).
Increasing the stiffness lowers the cutoff, but increases the
delay.

The clock servo uses this variable cutoff/phase to allow
the filter to overcome initial filtering delays at start-up. The
servo begins with a stiffness of one, and then increments the
stiffness each sample until reaching some maximum stiffness.
As the stiffness is increased, the filter cutoff is lowered, and
the one-way delay signal becomes smoother.
 PTPd’s clock servo filters the one-way delay separately
from the offset from master. This is for two reasons. The first
reason is that the one-way delay signal has a lower nominal
sample rate than the offset signal (cf. Equation (2.1-2.6)). The

one-way delay signal is therefore interpolated in the combined
offset from master signal. This interpolation lowers the
frequency of the one-way delay noise, which pushes more
noise into the pass-band of the low-pass filters. Filtering the
one-way delay directly eliminates the interpolation seen by the
filter.
 The second reason why the one-way delay is filtered
separately is due to the one-way delay signal’s having
different characteristics than the offset signal. The one-way
delay signal reflects the message propagation delay, and its
characteristics depend upon the network topology. In the case
of the typical T&M set-up, the one way delay is nominally
close to constant. A constant one-way delay signal can be
filtered through a low-cutoff, high-phase, low-pass filter
without increasing the tracking error of the clock servo. This is
because there is no time delay of a constant signal through a
real filter.
 Some applications may not offer a stable network
topology; therefore, the one-way delay signal would not be
nominally a constant. The current filtering scheme in PTPd’s
clock servo may not be appropriate for such applications.
However, the general approach of treating the one-way delay
separately from the offset from master would remain a useful
approach.

V. TESTS

A. Test Set-up
 PTPd is currently being developed for the VXI
Technology EX1048 precision thermocouple instrument [8].
The EX1048 is a 66MHz m68k embedded Linux platform.
The following tests exhibit PTPd running as a slave connected
over an Ethernet hub (except where noted) to a hardware-
supported master clock. The EX1048 was coordinated with a
hardware-supported master clock because it is expected that a
T&M set-up coordinated with IEEE 1588 will include a
hardware supported master clock. The master clock for the test
is an Agilent LXI IEEE-1588 Demonstration Kit. It is a non-
production device made available to the LAN Extensions for
Instrumentation (LXI) Consortium for IEEE 1588 testing.
Information on the LXI Consortium is available at [9].
 The Linux kernel receive time stamps are used, and the
kernel is modified to add kernel send time stamps. The Linux
software clock is replaced by a frequency adjustable hardware
clock implemented in an FPGA. The hardware clock is able to
latch the time of received pulses with sub-microsecond
precision, but the time is recorded with only microsecond
quantization. This is sufficient to test PTPd’s coordination,
which is on the order of microseconds. Again, the hardware
clock is used to allow the clock to be read with negligible jitter
by isolating jitter in the clock from jitter in the observation.
 The clock coordination is observed by the slave clock
recording the time of pulses-per-second (PPS) generated by
the master clock. This yields a 1Hz sampling of the slave
clock’s time with respect to the master clock.

B. Filtering

Figure 5 shows time offset between master and slave with
various levels of filtering in the clock servo. The top run
shows the results of sending unfiltered input to the PI
controller. The jitter in the input makes it through to the clock
and results in a poor time base. The low frequency undulations
are likely due to the large impulses in the input, and the higher
frequency noise on top of the undulations is likely due to the
persistent noise in the input.

The middle run uses the fully configured clock servo with
filters, but with a one-way delay filter stiffness of one

5

(equivalent to a two-sample average). The offset from master
is also filtered by a two-sample simple average. The high
frequency noise appears slightly smoother, and the
undulations seem slightly smoother as well.
 The bottom run has a one-way delay filter stiffness of 26,
and the coordination is significantly smoother. Most notably,
the large undulations have been cut down to small intermittent
excursions. These excursions are likely due to impulse noise
in the input that is not fully attenuated in the clock servo.

0 500 1000 1500

Time Index, s

O
ffs

et
, 1

0
us

 /
di

v

no filter

s = 2 0̂

s = 2 6̂

Fig. 5. Filtering Test

C. Convergence
 Figure 6 shows the time offset between master and slave
during the first ten minutes after PTPd starts-up and performs
an initial clock reset. Figure 7 shows the next roughly hour-
and-a-half after the initial convergence period.

-1

0

1

2

3

4

0 100 200 300 400 500 600

Time Index, s

O
ffs

et
, m

s

Fig. 6. Convergence Test, 0-10min

-10
-8
-6
-4
-2
0
2
4
6
8

10

600 1600 2600 3600 4600 5600

Time Index, s

O
ffs

et
, u

s

 Fig. 7. Convergence Test, 10-90min

 Figures 6-7 show that coordination is within ~100 µs after
roughly two minutes, and it is within 10 µs after roughly ten
minutes. The response characteristics of the PI controller
dominate the initial convergence because the one-way delay
filter has low stiffness values during this period. The servo
does not fully converge for about an hour. During this fine
convergence period, the one-way delay filter stiffness is

increasing and the filtering delay of the one-way delay signal
dominates the convergence.

D. Precision
 Figures 8-9 shows two histograms of the time offset
between master and slave after the clock servo is well
converged. The histograms contain 1 µs bins with 50,000
offset samples at 1 Hz (almost fourteen hours). Figure 8 is
from a test in which the slave was connected to the master
through an Ethernet hub, and Figure 9 is from a test in which
the slave was connected to the master through an Ethernet
switch.

Fig. 8 (top) and Fig. 9 (bottom). Offset Histograms

The histograms show that the offset distributions for both
runs are within 10 µs. The offset distribution of the switch run
is nearly as tight as the hub run. This indicates that jitter due to
switch queuing is insignificant with respect to the slave’s
internal jitter. There is a bias in both of the distributions, but
this is not a concern because the tight distribution indicates
that the bias is stable; therefore, it can be eliminated with a
latency correction as described previously.

Fig. 10. Allan Variances

Figure 10 shows Allan variance plots of the same 50,000
sample runs versus the variance of an uncoordinated run. The

6

variances for the coordinated hub and switch runs are nearly
on top of each other in the plot. The uncoordinated variance
has the V-shape typical of uncoordinated clocks due to
oscillator jitter on small time scales, a naturally low oscillator
variance on medium time-scales, and oscillator wander on
large time scales.

Figure 10 shows the advantage of using a PI controller.
The variance of the coordinated clock goes to zero for large
time scales. This indicates that the clock servo is properly
correcting the wander between the oscillators, and it is a result
of stable controller tracking.
 Figure 10 also shows the troubles with PI controllers. The
coordinated clock’s variance on medium time scales (1-100
seconds shown) is larger than the uncoordinated variance. This
is likely due to jitter in the offset estimate passing through the
filters, into the PI controller, and in-turn into the clock. The
jitter disrupts an oscillator that is naturally smooth on these
time scales.

VI. CONCLUSIONS

A. Performance
 PTPd coordinated the EX1048 with a hardware-supported
master clock within 10 µs. This precision comfortably exceeds
the needs of the application in which sampling rates will not
surpass 1 kHz.
 PTPd can fill the needs of applications requiring sub-
millisecond precision. PTPd exhibited coordination within ten
microseconds on a platform with a slow (66 MHz), fairly busy
CPU. It is reasonable to conjecture that PTPd could approach
single-microsecond precision on a modern desktop platform
with a more powerful (typically multi-gigahertz) CPU running
under light CPU loads.

B. Future Work
 PTPd is currently in the early stages of development. The
clock servo is still quite simple and naive. PTPd’s clock
coordination precision could be increased with improvements
to the clock servo design. Most notably, the noisy coordination
on medium time-scales could be smoother. This could be
addressed with the addition of a non-linear filtering element
that could more effectively attenuate impulses in the clock
servo input.
 There are other improvements that also may be effective.
The PI controller could benefit from improved tuning with the
aid of formal analytical methods. The controller might also
benefit from the use of gain scheduling. Finally, the one-way
delay filter could be improved to accommodate unstable
network topologies. The addition of some form of dynamic
stiffness adjustment would keep the clock servo responsive to
changes in the nominal one-way delay.

C. Open Source

PTPd is open source software. The source code is
available under same BSD-style license as NTP. The project is
hosted on SourceForge at ptpd.sourceforge.net.

VII. ACKNOWLEDGEMENTS

Michael Branicky was supported by the NSF (grant CCR-
0309910). VXI Technology, Inc. has contributed to the open
source community by supporting Kendall Correll and Nick
Barendt during PTPd’s development. Chad Greenebaum
contributed to PTPd’s initial development at Case Western
Reserve University. Matt McConnell, a Digital Designer at
VXI Technology, Inc., implemented the hardware clock used
for PTPd’s testing.

REFERENCES

1. IEEE Std 1588-2002. (for more information see
http://ieee1588.nist.gov/)

2. Weibel, H., Béchaz, D., “IEEE 1588 Implementation and
Performance of Time Stamping Techniques.” Proceedings of
the 2004 Conference on IEEE 1588, 2004.

3. Mills, D.L., and P.-H. Kamp. “The Nanokernel.”
Proceedings of the Precision Time and Time Interval (PTTI)
Applications and Planning Meeting, 2000.

4. Allan, D.W., and J.A. Barnes. “A Modified ‘Allan
Variance’ with Increased Oscillator Characterization Ability.”
Proceedings of the 35th Annual Frequency Control
Symposium, 470-475, 1981.

5. Allan, D.W., N. Ashby, and C.C. Hodge. “The Science of
Timekeeping.” Hewlett Packard Application Note 1289, 1997.

6. Allan, D.W., et. al. “Precision Oscillators: Dependence of
Frequency on Temperature, Humidity and Pressure.”
Proceedings of the 1992 IEEE Frequency Control Symposium,
Report of Working Group 3 of the IEEE SCC27 Committee,
1992.

7. Veitch, D., Babu, S., Pàsztor, A., “Robust
Synchronization of Software Clocks Across the Internet.”
Internet Measurement Conference, 2004.

8. VXI Technology, Inc., http://www.vxitech.com/

9. LXI Consortium, http://www.lxistandard.org/

